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Abstract. We classify initial-value problems for a class of one-dimensional evolution equations,
which can be reduced to Cauchy problems for some systems of first-order ordinary differential
equations. The technique applied relies heavily on higher conditional symmetries of the equations
under study, which means, in particular, that the obtained reductions cannot be derived within the
framework of the standard Lie approach.

1. Introduction

The principal object of the study in the present paper is the problem of reduction of initial-value
problems for nonlinear partial differential equations (PDEs) of the form

ut = g(u)uxx + f (u, ux) (1)

for the real-valued function u of two variables t, x. Provided g(u) �= constant, equation (1)
can always be reduced to the form

ut = uuxx + F(u, ux) (2)

by the change of the dependent variable u(t, x) = U(v(t, x)) with an appropriately chosen
function U . That is why, we will concentrate in the following on the case of the nonlinear
PDE (2).

The underlying idea of our approach to the analysis of reducibility of the initial-value
problems for equation (2) is to exploit their higher conditional symmetries as suggested in our
recent paper [1]. The higher conditional symmetry is the generalization of the Lie–Bäcklund
(higher Lie) symmetry (see, e.g., [2, 3]), on the one hand, and of the non-classical (conditional)
symmetry, on the other hand.

The motivation for introducing the concept of higher conditional symmetry was a necessity
to provide a symmetry setting for the ‘nonlinear separation of variables’, which is due to
Galaktionov [4, 5] and the ‘antireduction’ [6, 7]. We have proved [8] that it is higher conditional
symmetries that enable reductions of the corresponding evolution PDEs to systems of several
ordinary differential equations (ODEs) (see, also, [9]). Note that using Lie and non-classical
symmetries we can reduce a given PDE to one ODE. This is the reason why the phenomenon
of nonlinear separation of variables cannot be completely understood within the framework of
the theory of first-order symmetries.
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Furthermore, we have proved in [1] that existence of non-trivial higher conditional
symmetry is a necessary and sufficient condition for reducibility of a given evolution PDE
to a system of ODEs. This statement is the generalization of the known relation between
reduction of PDEs to ODEs and their non-classical symmetries (see, e.g., [10–16]).

An additional motivation for search for higher conditional symmetries of PDEs belonging
to the class (2) is the fact that a particular equation of the form (2), namely, the porous medium
equation,

ut = uuxx + u2
x

does not admit non-classical symmetries [17]. So it would be natural to classify PDEs of a
more general form that admit first- or higher-order conditional symmetries.

2. Some basic facts from the theory of higher Lie symmetries

When we talk about an (infinitesimal) Lie–Bäcklund transformation group, we mean the
canonical representation of this group

u′ = u + ε η(t, x, u, u1, . . . , uN)

u′
1 = u1 + ε Dx η(t, x, u, u1, . . . , uN), . . .

u′
k = uk + ε Dk

x η(t, x, u, u1, . . . , uN), . . . .

(3)

This group corresponds to the so-called Lie–Bäcklund vector field

Q =
∞∑
k=0

(
Dk
x η
) ∂

∂uk
≡ η

∂

∂u
+ (Dx η)

∂

∂u1
+
(
D2
x η
) ∂

∂u2
+ · · · . (4)

In formulae (3) and (4) Dx is the total differentiation operator

Dx = ∂

∂x
+

∞∑
k=0

uk+1
∂

∂uk

and uk = ∂ku
∂xk

, k = 0, 1, 2, . . . . The use of the canonical representation of the Lie–
Bäcklund group is more convenient for computations, since the prolongation formulae simplify
drastically. They are obtained by successive application of the total derivative operator Dx to
η, as is readily seen from the formula (4).

The coefficient η entering into (3) and (4) may also depend on the derivatives of the
function u(t, x) with respect to the temporal variable t . However, we intend to consider the
group (3) as a symmetry of the PDE (2) and, in view of this fact, we can express all the
derivatives of u with respect to t in terms of t, x, u, u1, u2, . . . on the solution set of PDE (2).
This yields (3) as the most general form of the infinitesimal Lie–Bäcklund group admitted by
equation (2).

It is common knowledge that the Lie–Bäcklund infinitesimal transformation group is the
generalization of the Lie infinitesimal transformation group. If the function η has the structure

η = η̃(t, x, u)− ξ0(t, x, u)ut − ξ1(t, x, u)u1 (5)

then the Lie–Bäcklund vector field (4) is equivalent to the Lie vector field (for further details
see [2, 3]):

Q = ξ0(t, x, u)
∂

∂t
+ ξ1(t, x, u)

∂

∂x
+ η̃(t, x, u)

∂

∂u
.
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Note that relation (5) is the necessary and sufficient condition for (3) to be reducible to a
Lie transformation group. Hence it follows, in particular, that if the order of the derivatives
contained in (3) is higher than the order of PDE (2), than the corresponding symmetry cannot
be reduced to a Lie symmetry.

Let us denote by the symbol M the surface in the space of variables t, x, u, ut , u1, u2, . . .

defined by the system of algebraic equations ut − uu2 − F = 0, Dj
x (ut − uu2 − F) =

0, j = 1, 2, . . . . We say that PDE (2) is invariant under the Lie–Bäcklund vector field (4) if
the condition

Q(ut − uu2 − F)
∣∣
M= 0 (6)

holds.
Relation (6) is the criterion for invariance of PDE (2) under the group (3) and as such

it contains the four-step algorithm for calculation of Lie–Bäcklund symmetries admitted by
(2). In the first step, we need to compute the result of the action of the operator Q (4) on
ut −uu2 −F . The next step is to eliminate all the derivatives utj , j = 0, 1, 2, . . . with the use
of the equations Dj

x (ut − uu2 − F) = 0, j = 0, 1, 2, . . . . The obtained relation is split with
respect to the variables uN+j , j > 0, which yields the system of linear PDEs (determining
equations) for the function η. Finally, in the fourth step, we solve the thus obtained system of
PDEs and obtain the most general form of the infinitesimal Lie–Bäcklund group (3) admitted
by equation (2).

Further details about higher Lie symmetries, as well as numerous examples of application
of the above algorithm for calculating higher symmetries of specific PDEs can be found in
[2, 3].

Denote by the symbol Lx the surface in the space of variables t , x, u, ut , u1, u2, . . . defined
by the system of algebraic equations η(t, x, u, u1, . . . , uN) = 0, Dj

x η(t, x, u, u1, . . . , uN) =
0, j = 1, 2, . . . . We say that PDE (2) is invariant under the Lie–Bäcklund vector field (4) if
the condition

Q(ut − F)
∣∣
M∩Lx= 0

holds.
The algorithm for computing higher conditional symmetries is very much the same as that

for computing standard Lie–Bäcklund symmetries. The principal difference is the necessity
to take into account not only differential consequences of the equation under study but the
differential consequences of the side condition η(t, x, u, u1, . . . , uN) = 0, as well. As a
result, the number of determining equations decreases and new (non-Lie) symmetries arise.
However, the price for this is the fact that the determining equations are no longer linear. Note
that the same situation takes place for non-classical symmetries. To calculate these symmetries,
one needs to solve nonlinear determining equations [10–16].

In full analogy with the classical symmetry reduction method, one can exploit conditional
symmetries in order to perform the dimensional reduction of an invariant PDE. An invariant
solution is looked for as the general solution of PDE

η(t, x, u, u1, . . . , uN) = 0. (7)

This equation is the criterion for invariance of the manifold u − u(t, x) = 0 with respect to
the action of the infinitesimal group (3). PDE (7) contains no derivatives with respect to t and,
consequently, can be regarded as theN th-order ODE with respect to the variable x. Its general
integral can be (locally) represented in the form

u(t, x) = U (t, x, ϕ1(t), ϕ2(t), . . . , ϕN(t)) (8)
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where ϕj (t) (j = 1, . . . , N) are arbitrary smooth functions. In the following, we call the
expression (8) the ansatz invariant under the Lie–Bäcklund vector field (4). We have proved
in [1] the assertion establishing the connection between reducibility of PDE of the form

ut = F(t, x, u, u1, . . . , un) (9)

to ordinary differential equations and its higher-order conditional symmetry.

Theorem. Let equation (9) with F ∈ CN+1(D), where D is an open domain in R
n+3, be

conditionally invariant under the Lie–Bäcklund vector field (4) with η ∈ C2(D′), where D′

is an open domain in R
N+3 and ∂η/∂uN �= 0 on D′. Then ansatz (8) invariant under the

Lie–Bäcklund vector field (4) reduces PDE (9) to a system ofN ordinary differential equations
for some functions ϕj (t) (j = 1, . . . , N),

dϕj
dt

= Fj (t, ϕ1, . . . , ϕN) j = 1, . . . , N. (10)

Now suppose the converse. Namely, that ansatz (8), where the function U and its derivatives
∂Uk+1/∂ϕj∂x

k (j = 1, . . . , N , k = 0, . . . , N) exist and are continuous on an open domain
D1 in R

N+2, reduces (9) to a system of ordinary differential equations (10) with Fi ∈ C1(D′
1),

where D′
1 is an open domain in R

N+2. Then there exists a Lie–Bäcklund vector field (4) such
that equation (9) is conditionally invariant with respect to it.

This theorem provides the connection between various direct methods for reducing a
given evolution-type PDE to systems of ordinary differential equations and those methods
which rely on its symmetries. It states that the direct and symmetry approaches, when taken
in full generality, are, in some sense, equivalent. However, for the purposes of the present
paper it is more convenient to apply the approach developed in [1, 8], that exploits the higher
conditional symmetries of equation (2).

In order to be able to implement the above reduction algorithm efficiently, we have
to integrate the nonlinear ODE (7) in a closed form. Evidently, this is not always
possible. However, as our previous experience shows, there are sufficiently many nonlinear
evolution equations such that their higher conditional symmetries are linear in the variables
u, u1, . . . , uN . So that, it would be natural to attempt classifying all the possible nonlinear
PDEs (2), that admit higher conditional symmetries of the form

Q =
∞∑
k=0

[
Dk
x

(
uN −

N−1∑
i=0

ai(t, x)ui

)]
∂

∂uk
. (11)

If such conditional symmetries are found, then equation (7) is linear and can be integrated to
yield an ansatz of the form

u =
N∑
i=1

fi(t, x)ϕi(t). (12)

There are numerous examples of such equations obtained both by the direct approach by
Galaktionov [4, 5], Olver [19] and by the symmetry approach by Zhdanov [8], Fokas and
Liu [9]. However, up to the best of our knowledge, the classification problem for PDE (2)
admitting conditional symmetries of the form (11) has not been solved yet in full generality.
One of the principal objectives of the present paper is to fill this gap. As shown in [18], the
order of the operator Q satisfies the inequality N � 5. In what follows, we will study the
casesN = 3, 4, 5 and describe all the possible inequivalent forms of the functions F such that
nonlinear evolution equation (2) admits conditional symmetries (11). Another objective of the
paper is to exploit higher conditional symmetries for reduction of initial-value problems for
nonlinear PDEs (2) with the help of the reduction technique developed in [1, 20].
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3. Classification of nonlinear equations (2) by their higher conditional symmetries

As we have already mentioned, the order of conditional symmetryN cannot be greater than 5.
On the other hand, symmetry (11) withN = 1, 2 reduces to a first-order conditional symmetry.
For these reasons, we restrict our considerations to the cases N = 3, 4, 5.

Theorem 1. Let the nonlinear evolution equation (2) be conditionally invariant with respect
to the Lie–Bäcklund operator (11) with N � 3. Then the function F is necessarily quadratic
in u, ux

F = λ0u
2
x + λ1uux + λ2u

2 + µ0ux + µ1u + µ2 (13)

where λ0, λ1, λ2, µ0, µ1, µ2 are constants.

Proof. We give the proof of the assertion for the case N = 3, the remaining cases N = 4, 5
are handled in the same way.

Writing down the invariance condition (6) for the operator (11) under N = 3 we obtain

Fuxuxux u
3
xx + 3Fuuxux u

2
xxux + (3a2 + 3Fuux + 2a2Fuxux )u

2
xx

+3Fuuuxuxxu
2
x + (6a1 + a2

2 + 3a1x + 3Fuu + a2Fuux + 3a1Fuxux )uxxux

+(4a0 + a2xx + 2a2a2x + 2a1x + 3a0Fuxux )uxxu + (a2xFux − a2t )uxx

+Fuuuu
3
x + (a1a2 + 3a1x + 3a0 + 3a1Fuux − a2Fuu)u

2
x

+(a0a2 + 5a0x + 2a1a2x + a1 xx + 3a0Fuux )uxu + (a0Fux + a1xFux − a1t )ux

+(2a0a2x + a0xx)u
2 + (a0Fu + a0xFux − a0 t )u− a0F = 0. (14)

The above relation should hold identically with respect to the variables t, x, u, ux, uxx .
Differentiating equation (14) three times with respect to the variableuxx , we obtainFuxuxux = 0,
which means that the function F is a quadratic polynomial in ux . With this fact in hand we
can differentiate (14) twice with respect to uxx and thus obtain that the coefficient of u2

x is a
constant.

Next, differentiating (14) with respect to uxx and twice with respect to ux , we come to the
conclusion that

F = λ0u
2
x + λ1uux + µ0ux + F1(u)

where λ0, λ1, µ0 are constants. Having substituted this function into (14) and differentiated
three times with respect to ux , we arrive at the desired form (13) for F . The theorem is proved.

�
Before going any further we give a brief account of the equivalence transformations of

the variables t, x, u that do not change the form of the whole class of PDEs

ut = uuxx + λ0u
2
x + λ1uux + λ2u

2 + µ0ux + µ1u + µ2 (15)

or of some of its subclasses. These transformations will be used in the following in order to
simplify the forms of evolution equations (15).

First of all, we note that in equation (15) we can cancel the coefficient µ0 by transforming
the spatial variable x

x ′ = x + µ0t.

That is why, in what follows we will suppose that µ0 = 0.
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Furthermore, given the condition λ1 �= 0, making the change of independent variables

x ′ = λ1x t ′ = λ2
1t

yields that λ1 = 1. Next, provided λ1 = 0, λ2 �= 0 we can rescale the variables t, x

x ′ =
√

|λ2| x t ′ = |λ2| t
in (15), thus getting λ2 = ±1.

So, the class of PDEs (15) splits into the following three sub-classes:

ut = uuxx + λ0u
2
x + uux + λ2u

2 + µ1u + µ2

ut = uuxx + λ0u
2
x ± u2 + µ1u + µ2

ut = uuxx + λ0u
2
x + µ1u + µ2.

We will also use the fact, that the equation

ut = uuxx + λ0u
2
x + uux +

2 + 4λ0

(3 + 4λ0)
2 u

2 + µ1u λ2 �= − 3
4

is transformed by the substitution

u(t, x) = exp

(
− 2x

3 + 4λ0

)
v(t, y) y = exp

(
x

3 + 4λ0

)
(16)

to become

vt = vvyy + λ0v
2
y + µ1v.

Given the condition λ0 = − 3
4 , the substitutions

u(t, x) = (sin x + 1)2 v(t, y) y = sin x − 1

cos x

u(t, x) = (cosh x − 1)2 v(t, y) y = cosh x + 1

sinh x
reduce the equations

ut = uuxx − 3
4u

2
x ± u2 + µ1u (17)

to the form

vt = vvyy − 3
4v

2
y + µ1v.

Note that the choice of one of the two transformations given above is implied by the sign at
the term u2 in equation (17).

Now we turn back to the symmetry classification of equations (15) that admit conditional
symmetries (11) under N = 3, 4, 5. We consider in some detail the case N = 3. Inserting
(13) into (14) yields the relation

(3a2 + 3λ1 + 4λ0a2)u
2
xx + (6a1 + a2

2 + 3a2x + 6λ2 + λ1a2

+6λ0a1)uxxux + (4a0 + a2xx + 2a2a2x + 2a1x + 6λ0a0)uxxu

+((2λ0ux + λ1u)a2x − a2t )uxx + (a1a2 + 3a1x + 3a0 + 3λ1a1

−2λ2a2)u
2
x + (a0a2 + 5a0x + 2a1a2x + a1xx + 3λ1a0)uxu

+((2λ0ux + λ1u)(a0 + a1x)− a1t )ux + (2a0a2x + a0xx)u
2

+((λ1ux + 2λ2u + µ1)a0 + (2λ0ux + λ1u)a0x − a0t )u

−(λ0u
2
x + λ1uux + λ2u

2 + µ1u + µ2)a0 = 0.
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As this relation must hold identically with respect to the variables u, ux , we can split it by u, ux
and obtain the system of algebraic and differential equations for finding unknown functions
a0, a1, a2

(3 + 4λ0)a2 + 3λ1 = 0

(3 + 2λ0)a2x + a2
2 + λ1a2 + 6(1 + λ0)a1 + 6λ2 = 0

a2xx + 2a2a2x + λ1a2x + 2a1x + (4 + 6λ0)a0 = 0

a1a2 − 2λ2a2 + (3 + 2λ0)a1x + 3λ1a1 + (3 + λ0)a0 = 0

2a1a2x + a0a2 + a1xx + λ1a1x + (5 + 2λ0)a0x + 4λ1a0 = 0

2a0a2x + a0xx + λ1a0x + λ2a0 = 0

a0t = 0 a1t = 0 a2t = 0 µ2a0 = 0.

Solving the above system yields an exhaustive description of all the possible Lie–Bäcklund
operators (11) with N = 3. The results obtained are summarized below, where we give all
inequivalent PDEs (2) admitting third-order conditional symmetries (11) and the corresponding
Lie–Bäcklund operators. Note that we skip those third-order Lie–Bäcklund symmetries which
lead to reductions that are particular cases of reductions through fourth- or fifth-order Lie–
Bäcklund symmetries.

ut = uuxx + λ0u
2
x + uux +

2 + 4λ0

(3 + 4λ0)2
u2 + µ1u + µ2 (18)

(
λ0 �= − 2

3 , λ0 �= − 3
4

)
Q = (

(3 + 4λ0)
2uxxx + 3(3 + 4λ0)uxx + 2ux

) ∂
∂u

+ · · ·

ut = uuxx − u2
x + µ1u + µ2 (19)

Q = (uxxx − Bux)
∂

∂u
+ · · · B = constant

ut = uuxx + λ0u
2
x + ε(1 + λ0)u

2 + µ1u + µ2 (20)(
λ0 �= − 3

4 , λ0 �= −1, ε = 0,±1
)

Q = (uxxx + εux)
∂

∂u
+ · · · .

Similarly, we obtain evolution equations that admit fourth- and fifth-order conditional
symmetries of the form (11). The results obtained are listed below.

ut = uuxx − 2
3u

2
x + uux − 6u2 + µ1u + µ2 (21)

Q = (uxxxx + 6uxxx − 9uxx − 54ux)
∂

∂u
+ · · ·

ut = uuxx − 2
3u

2
x + µ1u + µ2 (22)

Q = (uxxxx)
∂

∂u
+ · · ·

ut = uuxx − 3
4u

2
x + εu2 + µ1u + µ2 ε = 0,±1 (23)

Q = (
uxxxxx + 5εuxxx + 4ε2ux

) ∂
∂u

+ · · · .
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Remark 1. It is straightforward to apply the above results in order to describe PDEs of the
more general form (1), that admit higher conditional symmetries. To this end, one has to look
for a transformation u(t, x) = g(v(t, x)) reducing (1) to the form (15). As a result, one obtains
the following generalization of PDE (2) admitting higher conditional symmetries:

vt = g(v)vxx +

(
g(v)

d2g(v)

dv2

(
dg(v)

dv

)−1

+ λ0g(v)

)
v2
x + λ1g(v)vx

+λ2g
2(v)

(
dg(v)

dv

)−1

+ µ0vx + (µ1g(v) + µ2)

(
dg(v)

dv

)−1

where g(v) is an arbitrary smooth function. Conditional symmetries admitted by the above
equation are given by formulae (18)–(23), where one has to change u(t, x) to g(v(t, x)).
Furthermore, the ansatz for the function v(x) takes the form

g(v(t, x)) =
N∑
i=1

fi(t, x)ϕi(t).

Remark 2. Higher conditional symmetries listed in (18)–(23) are not new (in the sense that
the reductions corresponding to them are known). Our principal result is that they exhaust
the set of all possible conditional symmetries (11) with N = 3, 4, 5 admitted by inequivalent
PDEs of the form (2).

Remark 3. Equation (18) with µ2 = 0 possesses the additional conditional symmetry

Q = (uxxx − 3uxx − (B exp(−2x)− 2)ux + 2B exp(−2x)u)
∂

∂u
+ · · · (24)

where B is an arbitrary real constant. We have not singled out equation (18) under µ2 = 0,
since it is reduced to the form (20) under µ2 = 0, ε = 0 with the help of transformation (16),
and furthermore, conditional symmetry (24) is reduced to the conditional symmetry Q from
(20) under ε = 0. However, the ansätze

u = exp(2x) (ϕ1(t) + ϕ2(t) sinh(β exp(−x)) + ϕ3(t) cosh(β exp(−x)))
B = β2 > 0

u = exp(2x) (ϕ1(t) + ϕ2(t) sin(β exp(−x)) + ϕ3(t) cos(β exp(−x)))
B = −β2 < 0

u = ϕ1(t) + ϕ2(t) exp(x) + ϕ3(t) exp(2x) B = 0

corresponding to (24) seem to be new. Note that hereafter we denote by the symbol ϕi(t) an
arbitrary smooth functions of t .

4. Reduction of initial-value problems for evolution equations (2)

Thus there exist six inequivalent classes of PDEs (2) that are invariant with respect to Lie–
Bäcklund operators (11) under N > 2. Using their higher conditional symmetries we can
reduce these equations to systems of three, four or five ODEs (the number of ODEs is
determined by the order of the corresponding Lie–Bäcklund operator). Moreover, using the
technique developed in [1] we can describe classes of initial-value problems for evolution
equations (18)–(23), which can be reduced to Cauchy problems for the corresponding systems
of ODEs.
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Consider PDE (2) together with the initial-value condition

a(x)ux(0, x) + b(x)u(0, x) = c(x) (25)

where a(x), b(x), c(x) are some smooth real-valued functions. According to [1], one can
search for initial-value conditions, that are reducible with the help of higher conditional
symmetry (4), using the following two-step algorithm:

• compute the maximal Lie invariance algebra of PDE (7) within the class of Lie vector
fields

X = ξ(t, x)
∂

∂x
+ (ζ1(t, x)u + ζ2(t, x))

∂

∂u
(26)

• put

a(x) = ξ(0, x) b(x) = −ζ1(0, x) c(x) = ζ2(0, x).

As a result, we obtain the initial-value problem for the PDE (2) invariant with respect to
the Lie–Bäcklund operator (4), which can be reduced to a Cauchy problem for some system
of ODEs, provided the additional compatibility requirements are met (see, for further details,
[20]).

4.1. Reduction of (18)

Let us apply the technique described to PDE (18). First, integrating equation

(3 + 4λ0)
2uxxx + 3(3 + 4λ0)uxx + 2ux = 0 (27)

we obtain the ansatz

u(t, x) = ϕ1(t) + ϕ2(t) exp

(
− x

3 + 4λ0

)
+ ϕ3(t) exp

(
− 2x

3 + 4λ0

)
(28)

that reduces (18) to the system of three ODEs.
Next, we compute Lie symmetry of equation (27) and derive the following class of initial-

value conditions:

−(3 + 4λ0)

(
α1 + α2 exp

(
x

3 + 4λ0

)
+ α3 exp

(
− x

3 + 4λ0

))
ux(0, x)

+

(
α4 + 2α3 exp

(
− x

3 + 4λ0

))
u(0, x) = β1

+β2 exp

(
− x

3 + 4λ0

)
+ β3 exp

(
− 2x

3 + 4λ0

)
. (29)

Here α1, α2, . . . , β3 are arbitrary real constants.
Finally, inserting ansatz (28) into initial-value problem (18) and (29) yields the following

Cauchy problem:
dϕ1

dt
= 2 + 4λ0

(3 + 4λ0)2
ϕ2

1 + µ1ϕ1 + µ2

dϕ2

dt
= 2 + 4λ0

(3 + 4λ0)2
ϕ1ϕ2 + µ1ϕ2

dϕ3

dt
= 2

(3 + 4λ0)2
ϕ1ϕ3 +

λ0

(3 + 4λ0)2
ϕ2

2 + µ1ϕ3


α4 α2 0

−2α3 α1 + α4 2α2

0 −α3 2α1 + α4





ϕ1(0)

ϕ2(0)

ϕ3(0)


 =



β1

β2

β3


.
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4.2. Reduction of (19)

Turn now to PDE (19). Integrating equation

uxxx − Bux = 0 (30)

yields the ansatz for u(t, x), whose explicit form depends essentially on the sign of the
parameter B, namely,

u(t, x) = ϕ1(t) + ϕ2(t) sinh(βx) + ϕ3(t) cosh(βx) B = β2 > 0 (31)

u(t, x) = ϕ1(t) + ϕ2(t) sin(βx) + ϕ3(t) cos(βx) B = −β2 < 0 (32)

u(t, x) = ϕ1(t) + ϕ2(t)x + ϕ3(t)x
2 B = 0. (33)

The forms of symmetry operators admitted by the differential equation (30) also depend on
the sign of B. That is why, applying the above algorithm yields three different initial-value
conditions for PDE (19)

B = β2 > 0

(α1 + α2 sinh(βx) + α3 cosh(βx)) ux(0, x) + β (α4 − α2 cosh(βx)− α3 sinh(βx)) u(0, x)

= β (β1 + β2 sinh(βx) + β3 cosh(βx)) (34)

B = −β2 < 0

(α1 + α2 sin(βx) + α3 cos(βx)) ux(0, x) + β (α4 − α2 cos(βx) + α3 sin(βx)) u(0, x)

= β (β1 + β2 sin(βx) + β3 cos(βx)) (35)

B = 0(
α1 + α2x + α3x

2
)
ux(0, x) + (α4 − 2α3x)u(0, x) = β1 + β2x + β3x

2. (36)

Here α1, α2, . . . , β3 are arbitrary real constants.
Inserting (31) into the initial-value problem (19) and (34) yields the following Cauchy

problem:

dϕ1

dt
= −β2ϕ2

2 + β2ϕ2
3 + µ1ϕ1 + µ2

dϕ2

dt
= β2ϕ1ϕ2 + µ1ϕ2

dϕ3

dt
= β2ϕ1ϕ3 + µ1ϕ3


α4 α3 −α2

−α3 α4 α1

−α2 α1 α4





ϕ1(0)

ϕ2(0)

ϕ3(0)


 =



β1

β2

β3


.

(37)
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Next, substituting ansatz (32) into initial-value problem (19) and (35) we obtain the Cauchy
problem

dϕ1

dt
= −β2ϕ2

2 − β2ϕ2
3 + µ1ϕ1 + µ2

dϕ2

dt
= −β2ϕ1ϕ2 + µ1ϕ2

dϕ3

dt
= −β2ϕ1ϕ3 + µ1ϕ3


α4 α3 −α2

α3 α4 −α1

−α2 α1 α4





ϕ1(0)

ϕ2(0)

ϕ3(0)


 =



β1

β2

β3


.

(38)

Finally, inserting ansatz (33) into initial-value problem (19) and (36) we arrive at the
following Cauchy problem:

dϕ1

dt
= 2ϕ1ϕ3 − ϕ2

2 + µ1ϕ1 + µ2

dϕ2

dt
= −2ϕ2ϕ3 + µ1ϕ2

dϕ3

dt
= −2ϕ2

3 + µ1ϕ3


α4 α1 0

−2α3 α2 + α4 2α1

0 −α3 2α2 + α4





ϕ1(0)

ϕ2(0)

ϕ3(0)


 =



β1

β2

β3


.

(39)

4.3. Reduction of (20)

Evidently, ansätze corresponding to conditional symmetry Q from (20) are obtained from
formulae (31)–(33) under B = ε. What is more, the initial-value conditions have the forms
(34)–(36) with B = ε. Inserting the ansätze (31)–(33) under B = ε into the corresponding
initial-value problems for evolution equation (20) yields the following Cauchy problems:

ε = 1

dϕ1

dt
= (1 + λ0)ϕ

2
1 + λ0(−ϕ2

2 + ϕ2
3) + µ1ϕ1 + µ2

dϕ2

dt
= (1 + 2λ0)ϕ1ϕ2 + µ1ϕ2

dϕ3

dt
= (1 + 2λ0)ϕ1ϕ3 + µ2ϕ3

ϕ1(0), ϕ2(0), ϕ3(0) satisfy relations (37) with β = 1

ε = −1

dϕ1

dt
= −(1 + λ0)ϕ

2
1 − λ0(ϕ

2
2 + ϕ2

3) + µ1ϕ1 + µ2

dϕ2

dt
= −(1 + 2λ0)ϕ1ϕ2 + µ1ϕ2
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dϕ3

dt
= −(1 + 2λ0)ϕ1ϕ3 + µ2ϕ3

ϕ1(0), ϕ2(0), ϕ3(0) satisfy relations (38) with β = 1

ε = 0

dϕ1

dt
= 2ϕ1ϕ3 + λ0ϕ

2
2 + µ1ϕ1 + µ2

dϕ2

dt
= (2 + 4λ0) ϕ2ϕ3 + µ1ϕ2

dϕ3

dt
= (2 + 4λ0) ϕ

2
3 + µ2ϕ3

ϕ1(0), ϕ2(0), ϕ3(0) satisfy relations (39).

4.4. Reduction of (21)

Having calculated the Lie symmetry algebra of the equation

uxxxx + 6uxxx − 9uxx − 54ux = 0 (40)

within the class of Lie vector fields (26), we obtain the following class of initial conditions for
the evolution equation (21):

(α1 + α2 exp(3x) + α3 exp(−3x)) ux(0, x) + (α4 − 3α2 exp(3x) + 6α3 exp(−3x)) u(0, x)

= β1 + β2 exp(3x) + β3 exp(−3x) + β4 exp(−6x) (41)

where α1, α2, . . . , β4 are arbitrary real constants.
Integrating (40) yields the ansatz

u(t, x) = ϕ1(t) + ϕ2(t) exp(3x) + ϕ3(t) exp(−3x) + ϕ4(t) exp(−6x) (42)

which reduces the initial-value problem (21) and (41) to the Cauchy problem

dϕ1

dt
= 18ϕ2ϕ3 − 6ϕ2

1 + µ1ϕ1 + µ2

dϕ2

dt
= µ1ϕ2

dϕ3

dt
= 54ϕ2ϕ4 − 6ϕ1ϕ3 + µ1ϕ3

dϕ4

dt
= 18ϕ1ϕ4 − 6ϕ2

3 + µ1ϕ4




α4 9α3 −6α2 0

−3α2 3α1 + α4 0 −3α2

6α3 0 −3α1 + α4 −6α2

0 0 3α3 3α3 + α4






ϕ1(0)

ϕ2(0)

ϕ3(0)

ϕ4(0)


 =



β1

β2

β3

β4


.
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4.5. Reduction of (22)

Having calculated the Lie symmetry algebra of the equation uxxxx = 0 we arrive at the
following initial-value condition for evolution equation (22):(
α1 + α2x + α3x

2
)
ux(0, x) + (α4 − 3α3x) u(0, x) = β1 + β2x + β3x

2 + β4x
3 (43)

where α1, α2, . . . , β4 are arbitrary real constants. Integrating the equation uxxxx = 0 yields
the ansatz

u(t, x) = ϕ1(t) + ϕ2(t)x + ϕ3(t)x
2 + ϕ4(t)x

3

which reduces the initial-value problem (22) and (43) to the Cauchy problem

dϕ1

dt
= 2ϕ1ϕ3 − 2

3ϕ
2
2 + µ1ϕ1 + µ2

dϕ2

dt
= 6ϕ1ϕ4 − 2

3ϕ2ϕ3 + µ1ϕ2

dϕ3

dt
= 2ϕ2ϕ4 − 2

3ϕ
2
3 + µ1ϕ3

dϕ4

dt
= µ1ϕ4


α4 α1 0 0

−3α2 α2 + α4 2α1 0
0 −2α3 2α2 + α4 3α1

0 0 −α3 3α2 + α4





ϕ1(0)
ϕ2(0)
ϕ3(0)
ϕ4(0)


 =



β1

β2

β3

β4


.

4.6. Reduction of (23)

Consider the sixth class of evolution equations (23). Depending on ε, the general solution of
the equation

uxxxxx + 5εuxxx + 4ε2ux = 0 (44)

is given by one of the three formulae below

ε = 1 u(t, x) = ϕ1(t) + ϕ2(t) sin x + ϕ3(t) cos x + ϕ4(t) sin 2x + ϕ5(t) cos 2x (45)

ε = −1 u(t, x) = ϕ1(t) + ϕ2(t) sinh x + ϕ3(t) cosh x + ϕ4(t) sinh 2x + ϕ5(t) cosh 2x
(46)

ε = 0 u(t, x) = ϕ1(t) + ϕ2(t)x + ϕ3(t)x
2 + ϕ4(t)x

3 + ϕ5(t)x
4. (47)

Calculating the Lie symmetry algebra of equation (44) within the class of Lie vector fields
(26) we obtain the following initial conditions for the corresponding evolution equations (23):

ε = 1

(α1 + α2 sin x + α3 cos x)ux(0, x) + (α4 − 2α2 cos x + 2α3 sin x)u(0, x)

= β1 + β2 sin x + β3 cos x + β4 sin 2x + β5 cos 2x (48)

ε = −1

(α1 + α2 sinh x + α3 cosh x) ux(0, x) + (α4 − 2α2 cosh x − 2α3 sinh x) u(0, x)

= β1 + β2 sinh x + β3 cosh x + β4 sinh 2x + β5 cosh 2x (49)

ε = 0(
α1 + α2x + α3x

2
)
ux(0, x) + (α4 − 4α3x) u(0, x) = β1 + β2x + β3x

2 + β4x
3 + β5x

4 (50)

where α1, α2, . . . , β5 are arbitrary real constants.
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Inserting ansätze (45)–(47) into the corresponding initial-value problems (23) with ε = 1,
(48); (23) with ε = −1, (49); (23) with ε = 0, (50); reduces them to the following Cauchy
problems:

dϕ1

dt
= ϕ2

1 − 3ϕ2
4 − 3ϕ2

5 − 3
8ϕ

2
2 − 3

8ϕ
2
3 + µ1ϕ1 + µ2

dϕ2

dt
= −3ϕ3ϕ4 − 3ϕ2ϕ5 + ϕ1ϕ2 + µ1ϕ2

dϕ3

dt
= −3ϕ3ϕ5 − 3ϕ2ϕ4 + ϕ1ϕ3 + µ1ϕ3

dϕ4

dt
= 3

4ϕ2ϕ3 − 2ϕ1ϕ4 + µ1ϕ4

dϕ5

dt
= − 3

8ϕ
2
2 + 3

8ϕ
2
3 − 2ϕ1ϕ5 + µ1ϕ5



α4
3
2α3 − 3

2α2 0 0

−2α3 α4 −α1 −2α2 −2α3

−2α2 α1 α4 2α3 −2α2

0 − 1
2α2

1
2α3 α4 −2α1

0 − 1
2α3 − 1

2α2 2α1 α4







ϕ1(0)

ϕ2(0)

ϕ3(0)

ϕ4(0)

ϕ5(0)




=




β1

β2

β3

β4

β5




dϕ1

dt
= −ϕ2

1 − 3ϕ2
4 + 3ϕ2

5 − 3
8ϕ

2
2 + 3

8ϕ
2
3 + µ1ϕ1 + µ2

dϕ2

dt
= 3ϕ3ϕ4 − 3ϕ2ϕ5 − ϕ1ϕ2 + µ1ϕ2

dϕ3

dt
= 3ϕ3ϕ5 − 3ϕ2ϕ4 − ϕ1ϕ3 + µ1ϕ3

dϕ4

dt
= − 3

4ϕ2ϕ3 + 2ϕ1ϕ4 + µ1ϕ4

dϕ5

dt
= − 3

8ϕ
2
2 − 3

8ϕ
2
3 + 2ϕ1ϕ5 + µ1ϕ5



α4
3
2α3 − 3

2α2 0 0

−2α2 α4 α1 −2α2 2α3

−2α2 α1 α4 2α3 −2α2

0 − 1
2α2 − 1

2α3 α4 2α1

0 − 1
2α3 − 1

2α2 2α1 α4







ϕ1(0)

ϕ2(0)

ϕ3(0)

ϕ4(0)

ϕ5(0)




=




β1

β2

β3

β4

β5




dϕ1

dt
= 2ϕ1ϕ3 − 3

4ϕ
2
2 + µ1ϕ1 + µ2

dϕ2

dt
= 6ϕ1ϕ4 − ϕ2ϕ3 + µ1ϕ2

dϕ3

dt
= 12ϕ1ϕ5 + 3

2ϕ2ϕ4 − ϕ2
3 + µ1ϕ3

dϕ4

dt
= 6ϕ2ϕ5 − ϕ3ϕ4 + µ1ϕ4
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dϕ5

dt
= 2ϕ3ϕ5 − 3

4ϕ
2
4 + µ1ϕ5




α4 α1 0 0 0

−4α3 α2 + α4 2α1 0 0

0 −3α3 2α2 + α4 3α1 0

0 0 −2α3 3α2 + α4 4α1

0 0 0 −α3 α4







ϕ1(0)

ϕ2(0)

ϕ3(0)

ϕ4(0)

ϕ5(0)




=




β1

β2

β3

β4

β5



.

Next, we give an example of using the above reduction technique for constructing the
unique analytical solution of the initial-value problem for the evolution equation of the form
(15). Consider the following problem:

ut = uuxx − u2
x + µ1u + µ2(

α1 + x + α3x
2
)
ux(0, x)− 2α3xu(0, x) = α1x + x2

(51)

where µ1, µ2, α3, β1, β2 are arbitrary constants. Inserting (33) into (51) yields the Cauchy
problem (39) under α1 = β2, α2 = β3 = 1, α4 = β1 = 0. Integrating ODEs from (39) gives

ϕ1 = 1

1 − C1 exp(−µ1t)

( (
µ2 − µ1C

2
2

)
t − C2

2 ln (1 − C1 exp(−µ1t))

+
µ2

µ1
C1 exp(−µ1t) + C3

)

ϕ2 = C2

1 − C1 exp(−µ1t)
ϕ3 = µ1

2 (1 − C1 exp(−µ1t))

where C1, C2, C3 are arbitrary parameters (integration constants). They are specified by
imposing the initial Cauchy data (the second equation from (51)) on the functions ϕ1, ϕ2, ϕ3,
whence we obtain the unique solution of (51)

u(t, x) = 1

1 − (1 − µ1) exp(−µ1t)

(
µ2t +

(
µ2

µ1
− µ2

)
(exp(−µ1t)− 1)

)

+
µ1

2 (1 − (1 − µ1) exp(−µ1t))
x2.

It has been mentioned in the previous section that there are third-order conditional
symmetries, which give rise to reductions obtainable with the aid of fifth-order conditional
symmetries. However, these symmetries are useful within the context of initial-value problems,
since they may yield new initial-value conditions, which cannot be derived with the aid of
fifth-order conditional symmetries by the above described method. That is why, we give in
the appendix additional third-order conditional symmetries and then present an example of
the new initial-value problem that can be reduced to a Cauchy problem for a system of three
ODEs.

5. Discussion

Application of the methods and ideas of the Lie theory of continuous groups to solving
initial/boundary value problems for nonlinear PDEs still remains a great challenge for
mathematicians. The principal reason for this situation is the fact that the class of initial or
boundary conditions for PDEs of practical importance, that can be efficiently handled by the
symmetry reduction routine, is too narrow compared with practical needs. This was one of the
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reasons why there were numerous attempts to generalize the notion of classical Lie symmetry
in order to weaken constraints on the choice of initial/boundary conditions that are needed
to secure invariance of the initial/boundary value problem under some prescribed symmetry
group. In this way, a number of new efficient reduction techniques have been developed, like the
non-classical [10], conditional symmetry [11–13, 15, 16], direct [14], nonlinear separation of
variables [4, 5, 19], antireduction [6, 7] and higher conditional [7, 8] (or generalized conditional
[9]) symmetry methods. These methods can be conventionally classified into two principal
groups. The first group contains the direct methods (the ansatz method by Fushchych, the direct
method by Clarkson and Kruskal, the antireduction method by Fushchych and Zhdanov and
the method of nonlinear separation of variables, which is due to Galaktionov), relying upon a
special ad hoc representation of the solution to be found in the form of an ansatz containing some
arbitrary elements (functions)f1, f2, . . . , fn and unknown functionsϕ1, ϕ2, . . . , ϕm with fewer
numbers of independent variables. Inserting the ansatz in question into the PDE under study
and requiring for the obtained relation to be equivalent to a system of PDEs for the functions
ϕ1, ϕ2, . . . , ϕm yields nonlinear determining equations for the functionsf1, f2, . . . , fn. Having
solved the latter yields a number of ansätze reducing a given PDE to one or several PDEs
having fewer independent variables. The second group of methods (the non-classical method
by Bluman and Cole, the method of conditional symmetries by Fushchych, the method of side
conditions by Olver and Rosenau, the method of higher conditional symmetries by Zhdanov
and Fokas and Liu) may be regarded as infinitesimal ones. They are in line with the traditional
Lie approach to the reduction of PDEs, since they exploit symmetry properties of the equation
under study in order to construct its invariant solutions. And again any deviation from the
standard Lie approach requires solving an over-determined system of nonlinear determining
equations.

The direct and infinitesimal approaches are equivalent in the sense that they yield the same
invariant solutions. However, a proper choice of an approach when solving some specific
problem may simplify essentially the calculations. In particular, when handling classification
problems, it is definitely more convenient to use the infinitesimal approach. On the other hand,
the direct approach is more flexible and is more straightforwardly generalized. No wonder that
the first examples of reductions of nonlinear PDEs to several ordinary differential equations
were found by direct methods by properly generalizing the form of similarity ansätze.

As shown in the present paper (see also [20]), higher conditional symmetries are the
most efficient tool for solving the problem of dimensional reduction of initial-value problems
for evolution-type PDEs in a purely algebraic way. Moreover, provided some reasonable
smoothness conditions are met, reducibility of an initial-value problem for PDE (2) to a Cauchy
problem for some system of ODEs is in one-to-one correspondence with higher conditional
symmetries admitted by (2) [20].

Having reduced an initial-value problem (2) and (25) to a Cauchy problem for a system
of ODEs extends the choice of methods for investigation of (2) and (25) substantially. First,
we can try to solve the Cauchy problem in question analytically, thus obtaining an exact
solution of the corresponding initial-value problem (2) and (25). However, even if we do not
succeed in integrating it in a closed form, there is a broad choice of highly efficient routines
for solving the Cauchy problem approximately, which, in turn, yields approximate solutions
of the initial-value problem for the nonlinear partial differential equation (2).

Since higher Lie symmetries are particular cases of higher conditional symmetries, the
above reduction technique can be applied to solitonic evolution equations, as well. So it
might be of interest to investigate the problem of classifying initial-value conditions for
solitonic equations such that the corresponding initial-value problems can be reduced to Cauchy
problems for some systems of nonlinear ODEs.
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The last remark concerns systems of evolution equations (which are not necessarily of
parabolic type). Our approach can be easily modified in order to become applicable to systems
of PDEs. This idea seems to be especially promising for systems of hydrodynamic-type
equations which admit infinite-parameter Lie–Bäcklund groups. These and related problems
are under study now and will be reported in our future publications.
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Appendix. Additional conditional symmetries for PDE (2)

Additional third-order conditional symmetries appears for the following PDE:

ut = uuxx − 3
4u

2
x + εu2 + µ1u + µ2

where ε = 0,±1, µ2 �= 0. We give the list of these symmetries and the corresponding ansätze
omitting the details of the derivation.

Case 1. ε = 1

(1) Q = (uxxx + 4ux)
∂

∂u
+ · · ·

u(t, x) = ϕ3(t) cos 2x + ϕ2(t) sin 2x + ϕ1(t)

(2) Q = (
uxxx + 3(tan x)uxx +

(
3 tan2 x + 1

)
ux
) ∂
∂u

+ · · ·

u(t, x) = ϕ3(t) sin2 x + ϕ2(t) sin x + ϕ1(t).

Case 2. ε = −1

(1) Q = (uxxx − 4ux)
∂

∂u
+ · · ·

u(t, x) = ϕ3(t) cosh 2x + ϕ2(t) sinh 2x + ϕ1(t)

(2) Q = (uxxx ∓ 3uxx + 2ux)
∂

∂u
+ · · ·

u(t, x) = ϕ3(t)e
±2x + ϕ2(t)e

±x + ϕ1(t)

(3) Q = (
uxxx − 3(tanh x)uxx +

(
3 tanh2 x − 1

)
ux
) ∂
∂u

+ · · ·

u(t, x) = ϕ3(t) sinh2 x + ϕ2(t) sinh x + ϕ1(t)

(4) Q = (
uxxx − 3(coth x)uxx +

(
3 coth2 x − 1

)
ux
) ∂
∂u

+ · · ·

u(t, x) = ϕ3(t) cosh2 x + ϕ2(t) cosh x + ϕ1(t).
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Case 3. ε = 0

(1) Q = (uxxx)
∂

∂u
+ · · ·

u(t, x) = ϕ3(t)x
2 + ϕ2(t)x + ϕ1(t)

(2) Q = (uxxx − 3x−1uxx + 3x−2ux)
∂

∂u
+ · · · (A1)

u(t, x) = ϕ3(t)x
4 + ϕ2(t)x

2 + ϕ1(t)

(3) Q =
(
uxxx +

6x

x2 + β
uxx − 6

(
1

x2 + β
+ 2

(
x

x2 + β

)2
)
ux

− 24x(
x2 + β

)2 u

)
∂

∂u
+ · · ·

u(t, x) = ϕ3(t)
(
x4 + β2

)
+ ϕ2(t)

(
x3 − βx

)
+ ϕ1(t)x

2.

Consider, for example, the conditional symmetry (A1). Calculating Lie symmetry of the
equation

uxxx − 3x−1uxx + 3x−2ux = 0

within the class of Lie vector fields (26), we arrive at the following initial-value problem:

ut = uuxx − 3
4u

2
x + µ1u + µ2

(α1x + α2x
−1 + α3x

3)ux(0, x) + (α4 − 4α3x
2)u(0, x) = β1 + β2x

2 + β3x
4

(A2)

where α1, α2, . . . , β3 are arbitrary real constants.
Comparing this problem to that corresponding to the fifth-order conditional symmetry

Q = (uxxxxx)
∂
∂u

+ · · · , we conclude that (A2) cannot be reduced to the latter. Ansatz (A1)
reduces (A2) to the Cauchy problem for the system of three ODEs

dϕ3

dt
= 2ϕ3ϕ2 + µ1ϕ3 + µ2

dϕ2

dt
= 12ϕ3ϕ1 − ϕ2

2 + µ1ϕ2

dϕ1

dt
= 2ϕ2ϕ1 + µ1ϕ1


α4 2α2 0

−4α3 2α1 + α4 4α2

0 −2α3 4α1 + α4





ϕ1(0)

ϕ2(0)

ϕ3(0)


 =



β1

β2

β3


.
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